Outline

- Basics
- Magnetic scattering
- Spin manipulation
-Instruments

Basics

Reminder:

The scattering cross section:

$$
\frac{d \sigma}{d \Omega}=\sum_{i, j} b_{i} b_{j} \exp \left(i \vec{q}\left(\vec{R}_{i}-\vec{R}_{j}\right)\right)
$$

Suppose that at position R_{i} we can have different scattering length with a certain probability distribution

$$
\begin{gathered}
\left\langle b_{i} b_{j}\right\rangle=\left\langle b_{i}\right\rangle\left\langle b_{j}\right\rangle+\delta_{i j}\left(\left\langle b_{i}^{2}\right\rangle-\left\langle b_{i}\right\rangle^{2}\right) \\
\frac{d \sigma}{d \Omega}=\sum_{i, j}\left\langle b_{i}\right\rangle\left\langle b_{j}\right\rangle \exp \left(i \vec{q}\left(\vec{R}_{i}-\vec{R}_{j}\right)\right)+\sum_{i}\left(\left\langle b_{i}^{2}\right\rangle-\left\langle b_{i}\right\rangle^{2}\right) \\
I_{\text {coherent }}(\vec{q})+I_{\text {incoherent }}(\vec{q})
\end{gathered}
$$

bican have a distribution because:

- different isotopes exist
- the nucleus has a spin I => with the neutron $1 / 2$ spin it forms two possible states

Isotope Incoherence

Spin Incoherence
$I+1 / 2 \Rightarrow 2(I+1 / 2)+1$ states with scattering length b_{+} $I-1 / 2 \Rightarrow 2(I-1 / 2)+1$ states with scattering length b.

Coherent

$$
\left\langle b_{i}\right\rangle=b_{+} \frac{I+1}{2 I+1}+b_{-} \frac{I}{2 I+1}
$$

Incoherent

$$
\left(\left\langle b_{i}^{2}\right\rangle-\left\langle b_{i}\right\rangle^{2}\right)=\left(b_{+}-b_{-}\right)^{2} \frac{I(I+1)}{(2 I+1)^{2}}
$$

Let's define the polarization of the beam as: $\vec{P}=2\langle\vec{s}\rangle=\langle\vec{\sigma}\rangle$
In terms of Pauli matrices

$$
\sigma_{x}=\binom{01}{10} \quad \sigma_{y}=\left(\begin{array}{cc}
0-i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Scattering length on a nucleus with spin I:

$$
b=A+\frac{1}{2} B \hat{\sigma} \hat{I}
$$

$$
A=b_{+} \frac{I+1}{2 I+1}+b_{-} \frac{I}{2 I+1}
$$

$$
B=\frac{2\left(b_{+}-b_{-}\right)}{2 I+1}
$$

σ_{x} and σ_{y} changes the spin state of the neutron $=>$ spin flip scattering σ_{z} does not $=>$ non spin flip scattering
If the nuclear spin I is randomly oriented in space each one has $1 / 3$ probability thus: Spin Incoherent scattering $2 / 3$ spin flip $1 / 3$ non spin flip $P \Rightarrow-1 / 3 P$

Magnetic scattering

The neutron has a $1 / 2$ spin $\Rightarrow>$ magnetic moment $\mu_{n}=v_{n} \mu_{N}$
μ_{N} nuclear Bohr magneton and $\mathrm{v}_{\mathrm{n}}=-1.913$

With a magnetic field the interaction potential Lovesey 1986:

$$
\begin{aligned}
& V(\vec{R})=-\vec{\mu}_{n} \vec{B}=\gamma_{n} \mu_{N}\left[2 \mu_{B} c u r l\left(\frac{\overrightarrow{\vec{s}} \times \overrightarrow{\vec{R}}}{\left|R^{3}\right|}\right)-\frac{e}{2 m_{e} c}\left(\vec{p} \frac{\vec{\sigma} \times \overrightarrow{\vec{R}}}{\left|R^{3}\right|}+\frac{\vec{\sigma} \times \vec{R}}{\left|R^{3}\right|} \vec{p}_{e}\right)\right] \\
& \vec{s}=\text { eletron spin operator, } \vec{p}_{e}=\text { eletron momentum operator } \\
& \vec{\sigma}=\text { neutron spin operator }
\end{aligned}
$$

The matrix element (scattering probability) becomes:

$$
\begin{gathered}
\left\langle k^{\prime}\right| V_{M}|k\rangle=-r_{0} \hat{\sigma} \hat{Q}_{\perp} \text { with } r_{0}=\frac{\gamma_{n} e^{2}}{m_{e} c^{2}} \\
\hat{Q}_{\perp}=\sum_{i} \exp \left(i \vec{q} \vec{r}_{i}\right)\left(\tilde{q} \times(\vec{s} \times \tilde{q})-\frac{i}{\hbar|\vec{q}|}\left(\tilde{q} \times \vec{p}_{i}\right)\right) \text { with } \tilde{q}=\frac{\vec{q}}{|\vec{q}|}
\end{gathered}
$$

or in terms of the magnetization and changing to integral to account for the spatial extent of the electrons

$$
\vec{Q}=-\frac{1}{2 \mu_{B}} \int d \vec{r} \exp (\overrightarrow{i k} \vec{r}) \vec{M}(\vec{r}) \text { and } \vec{Q}_{\perp}=\vec{Q}-\tilde{q}(\vec{Q} \tilde{q})
$$

Of the sample spins (magnetization) ONLY THE COMPONENT PERPENDICULAR to q contributes !!This
is fundamentally different from the nuclear spin!

The scattered intensity is the Fourier transform of the self correlation function of the scattering length density

Alternatively if the Fourier transform of the scattering length density is $F(q)$

$$
S(q)=F(q) F^{*}(q)
$$

If $F(q)=F_{N}(q)+F_{M}(q)$ in the most generic case there will be four terms:

- nuclear
- magnetic
- nuclear magnetic interference
- chiral

Unpolarized neutrons

- comparable intensity to nuclear
- identified by a priory knowledge
- temperature dependence

50% spin flip scattering

spin flip scattering

50% non spin flip scattering

8. Farrego Polarized Neutrons

$$
\left.\begin{array}{rl}
U P_{X} & =N+\frac{1}{2} M+\frac{1}{3} I \\
D O W N_{X} & =\frac{1}{2} M+\frac{2}{3} I \\
U P_{Z} & =N+\frac{1}{2} M+\frac{1}{3} I \\
& \begin{array}{ll}
\mathrm{N} \text { the nuclear scattering } \\
\text { M the magnetic scattering }
\end{array} \\
D O W N_{Z} & =\frac{1}{2} M+\frac{2}{3} I \\
\text { I the incoherent scattering }
\end{array}\right] \begin{aligned}
& \\
U P_{Y} & =N+\frac{1}{3} I \\
D O W N_{Y} & =M+\frac{2}{3} I
\end{aligned}
$$

When the scattering is non negligibly quasielastic

50\% spin flip scattering

with distribution

$$
U P_{X}=N \frac{1+f g}{2}+\frac{1}{2} M-\frac{g f}{2} M \sin ^{2} \varepsilon+\frac{3-g f}{6} I
$$

$$
D O W N_{X}=N \frac{1-g}{2}+\frac{1}{2} M+\frac{g}{2} M \sin ^{2} \varepsilon+\frac{3+g}{6} I
$$

$$
U P_{Z}=N \frac{1+J g}{2}+\frac{1}{2} M+\frac{-g J}{6} I
$$

$$
D O W N_{Z}=N \frac{1-g}{2}+\frac{1}{2} M+\frac{3+g}{6} I
$$

$$
U P_{Y}=N \frac{1+f g}{2}+\frac{1-g f}{2} M+\frac{g f}{2} M \sin ^{2} \varepsilon+\frac{3-g f}{6} I
$$

$$
D O W N_{Y}=N \frac{1-g}{2}+\frac{1+g}{2} M-\frac{g}{2} M \sin ^{2} \varepsilon+\frac{3+g}{6} I
$$

Spin manipulation

Quantum mechanical description of the neutron spin state:

$|\chi\rangle=a|+\rangle+b|-\rangle$ where a and b can be complex and $\sqrt{a^{2}+b^{2}}=1$ and conveniently $\quad|\chi\rangle=e^{-i \varphi / 2} \cos \frac{\theta}{2}|+\rangle+e^{i \varphi / 2} \sin \frac{\theta}{2}|-\rangle$ this leads to $\left\langle\hat{\sigma}_{x}\right\rangle=\sin \theta \cos \varphi,\left\langle\hat{\sigma}_{y}\right\rangle=\sin \theta \sin \varphi,\left\langle\hat{\sigma}_{x}\right\rangle=\cos \theta$

Time evolution of the neutron spin in magnetic field

$$
\frac{\partial \hat{\sigma}}{\partial t}=\frac{1}{\hbar}\left[\hat{o}, H_{s}\right]=-\frac{\gamma}{2}[\hat{\sigma},(\hat{\sigma} \vec{H})]=\ldots=-\gamma(\vec{H} \times \hat{\sigma})
$$

The Polarization of the beam $\mathrm{P}=<\sigma>$ behaves as a "classical" Larmor precession

$$
\gamma_{\mathrm{L}}=2957 \mathrm{~Hz} / \text { Gauss } \quad \frac{\Delta \phi}{\Delta x}[\mathrm{deg} / \mathrm{cm}]=2.65 \lambda[\AA] H[\text { Gauss }]
$$

What happens if the direction of the magnetic field changes in space?
The moving neutron will see a B field which changes its direction in time

Two limiting cases

$$
\begin{aligned}
& \text { if } \omega_{B}<\omega_{L} \text { it will follow adiabatically } \\
& \text { if } \omega_{B}>\omega_{L} \text { it will start to precess around the new field direction }
\end{aligned}
$$

adiabatic example:
neutron trajectory

Non adiabatic example : Mezei flipper
n/2 Flipper
180 degree Precession around an axis at 45 degrees

EII FOR SCIENCE
B. Farrao Polarized Neutrons

RF flipper

$B_{r f}$ oscillating $\omega_{R F}$ radiofrequency field

Makes up a π flipper

- if $B_{0} V_{L}=\omega_{R F}$
- and $B_{R F}$ is just enough for a π turn during the flight time

Haussler Xtal $\mathrm{Cu}_{2} \mathrm{MnAI}$ (111):

- $F_{M}(q)=F_{N}(q)$ for one of the Bragg reflections
- easy to saturate
- grow single crystal
- controlled mosaicity
- low N/2 contamination (or filter)

$$
\mathrm{R}=\frac{4 \mathrm{~N}^{2} \mathrm{~d}^{4}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)^{2}}{\pi^{2} \mathrm{n}^{4}}
$$

$$
\begin{aligned}
\frac{\Delta \lambda}{\lambda} & =\frac{2 d^{2}\left(\mathrm{f}_{1}-\mathrm{f}_{2}\right)}{\pi} \\
\theta & \sim \frac{\lambda}{2 \mathrm{~d}}
\end{aligned}
$$

He^{3} absorbs only neutrons with spin antiparallel to the nuclear spin

Instruments

Polarized Neutrons

A $3^{\text {rd }}$ generation Cryopad has recently been designed to carry out elastic and inelastic scattering experiments with 0.5 deg precision.

Echo condition:

$$
\int_{\pi / 2} B_{1} d \ell=\int_{\pi}^{\pi} B_{2} d l
$$

The measured quantity is: $S(q, t) / S(q, 0)$ where

$$
t \propto \lambda^{3} \int B d \ell
$$

For elastic scattering: $\quad \varphi_{t o t}=\frac{\gamma B_{1} l_{1}}{v_{1}}-\frac{\gamma B_{2} l_{2}}{v_{2}}=0$
For omega energy exchange:

$$
\begin{equation*}
\varphi_{t o t}=\frac{\hbar \gamma B l}{m v^{3}} \omega+o\left(\left(\frac{\omega}{1 / 2 m v^{2}}\right)^{2}\right) \tag{111}
\end{equation*}
$$

The probability of omega energy exchange:

$$
S(q, \omega)
$$

The final polarization: $\langle\cos \varphi\rangle=\frac{\int \cos \left(\frac{\hbar \gamma \beta b}{m v^{3}} \omega\right) S(q, \omega) d \omega}{\int S(q, \omega) d \omega}=S(q, t)$

Say you have a weak but well defined excitation

$$
\begin{gathered}
S(q, \omega)=0.95 \cdot \delta(\omega)+0.025 \cdot\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right) \quad S(q, t)=0.95+0.05 \cdot \cos \left(\omega_{0}\right) \\
\text { Bad signal to noise, } \Delta N / \lambda \Rightarrow \text { no good for Spin Echo }
\end{gathered}
$$

10% marked polymer chain(H) in deuterated matrix of the same polymer melt
at short time \Rightarrow Rouse dynamics $1 /$ tau $\sim q^{4}$ at longer times starts to feel the "tube" formed by the other chains (deGennes)
D. Richter, B. Ewen, B. Farago, et al., Physical Review Letters 62, 2140 (1989).

BNC Neutron school
P. Schleger, B. Farago, C. Lartigue, et al., Physical Review Letters 81, 124 (1998).
'spin ice' materials $\mathrm{Ho}_{2} \mathrm{Ti}_{2} \mathrm{O}_{2}, \mathrm{Dy}_{2} \mathrm{Ti}_{2} \mathrm{O}_{7}$ and $\mathrm{Ho}_{2} \mathrm{Sn}_{2} \mathrm{O}_{7}$ the spin is equivalent to the H displacement vector in water ice

Paramagnetic echo => Only magnetic scattering gives echo !

Single exponential thermally activated

Q independent relaxation

G. Ehlers , Cornelius , A L, Orendac , M, Kajnakova , M, Fennell , T, Bramwell ,S T, Gardner , Journal of Physics Condensed Matter 15, L9 (2003).

It's over folks ! thanks...

