Imperial College London

Neutrons in soft matter

Lecture 2 – Reflectometry & Dynamics

João T. Cabral & Julia S Higgins Department of Chemical Engineering Imperial College London

David G Bucknall

Heriot-Watt, UK

Outline

Lecture 1 – Structure & kinetics – SANS

Introduction

soft matter & relevance of neutron scattering Single objects: spheres, coils, rods...

Single chain polymer conformation (solution and blends)

Polymer blends: interactions, conformation & dynamics (equilibrium and phase separation)

Lecture 2 – Interfaces and dynamics

Reflectivity and diffusion

Dynamics in soft matter, QENS, BS, Spin-echo

Forster et al (2011)

Reflectometry: study of interfaces

Miscible systems

• Interdiffusion, e.g., welding

Immiscible systems

- Copolymers, e.g., di-blocks
- Reduce interfacial tension \rightarrow smaller dispersed phase
- Entangle with homopolymers
 → increase strength

Reflectometry

CRISP (ISIS)

Significance of the interfacial width

Theoretical width

• Infinite molecular weight limit

$$w_t = \frac{2a}{(6\chi)^{0.5}}$$

E Helfand & AM Sapse J Chem Phys 62 (1975) 1327

where a (statistical segment length)

$$w_{t} = \frac{2a}{\sqrt{6}} \left(\chi - \frac{\pi^{2}}{6} \left(N_{1}^{-1} + N_{2}^{-1} \right) \right)^{-1/2}$$

M Stamm & DW Schubert Ann Rev Mater Sci 25 (1995) 325

Basics of Reflectivity

The Reflectivity Profile

θ

Evaluating Reflectivity Data

Single layers and bilayers

$$r'_{m-1,m} = \frac{r_{m-1,m} - r_{m,m+1} \exp(2i\beta_m)}{1 + r_{m-1,m} r_{m,m+1} \exp(2i\beta_m)}$$

$$\beta_m = (2\pi/\lambda) n_m d_m \sin \theta$$

$$c_{m} = \begin{bmatrix} \cos \beta_{m} & -(i/\kappa_{m})\sin \beta_{m} \\ -i\kappa_{m}\sin \beta_{m} & \cos \beta_{m} \end{bmatrix}$$
$$M = \prod_{m=0}^{m} c_{m} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$
$$R = \frac{(M_{11} + M_{12}\kappa_{m+1})\kappa_{0} - (M_{21} + M_{22})\kappa_{m+1}}{(M_{11} + M_{12}\kappa_{m+1})\kappa_{0} + (M_{21} + M_{22})\kappa_{m+1}}$$

Interfacial Width - Definition

Effect of Limiting Q range on Observation Window

Effect of Angle on the Q Range

Effect of Crystallinity on reflectivity

Brewster angle micrograph of surface of i-PP (bar 20µm)

Roughness causes off-specular scattering and increased resolution term.

Thermally Excited Capillary Waves

According to the equipartition theorem each mode increases the surface energy by 0.5 kT.

The actual surface is roughened by a superposition of all possible capillary wave modes.

NR Measured Interfacial Width

Projection onto z-y plan

Polymer Interdiffusion

Δ

As made

t = **0**

Annealed t > 0

Non-Fickian Diffusion - Case II Diffusion

Non-Fickian Diffusion

Δ

t > 0

Polymer Diffusion

A Karim et al, Phys Rev B 42 (1990) 6846

Real Time Reflectivity Measurements

Si/PS (50k)/dPS (40k) @ 115 C

Calculating a Diffusion Coefficient $w = \sqrt{4Dt}$

For dPS-PS system:

 $D = (1.7 \pm 0.2) \times 10^{-17} \,\mathrm{cm}^2\mathrm{s}^{-1}$

$$D = \frac{k_B T d_T^2}{3N^2 \zeta b^2}$$

M Doi and SF Edwards The Theory of Polymer Dynamics (1986)

When
$$\zeta$$
 (115C) = 0.199 dyne.s.cm⁻¹
and d_T = 5.7 nm

 $D = 2.81 \times 10^{-17} \text{ cm}^2 \text{s}^{-1}$

Reptation time:

$$\tau_r = \frac{Nb^2}{3\pi^2 D}$$

$$\tau_r = 3223 \pm 363 \text{ s (dPS)}$$

$$= 4333 \pm 489 \text{ s (hPS)}$$

$$\tau_R = \frac{d_T^2}{9\pi^2 D}$$

Rouse time:

Polymer-Oligomer Interdiffusion Reflectivity Cell

Neutron Reflectivity Melt Cell

Momentum Transfer, Q (Å⁻¹)

dPMMA(100k) / OMMA(510) @ 45 C

Off-specular reflection

Grazing incidence: wide and small angle

P Muller (2011)

Polymer-fullerene blends

Adv. Mater. 25 985-991 (2013)

Thin films

PS (2k), 30 nm

1% C60, 30 nm

PS+5% C60 h = 100nm

GISANS & reflectometry

'Spinodal nucleation'

Phys. Rev. Lett. **105**, 038301 (2010) *Macromolecules* **44**, 4530-4537 (2011)

Organic Solar Cell lifetime?

Summary

Reflectivity

study and design interfaces

• investigate diffusion mechanisms

• engineer `functional' surfaces / devices

Imperial College London

Neutrons in soft matter

Lecture 2 (II) – Dynamics

João T. Cabral Department of Chemical Engineering Imperial College London

Scattering theory reminder

$$\frac{d^{2}\sigma}{d\Omega dE} = \left(\frac{d^{2}\sigma}{d\Omega dE}\right)_{coh} + \left(\frac{d^{2}\sigma}{d\Omega dE}\right)_{inc}$$
coherent incoherent

$$\left(\frac{d^2\sigma}{d\Omega dE}\right)_{coh} = \frac{1}{2\pi\hbar} \frac{k_1}{k_0} \frac{\sigma_{coh}}{4\pi} \int_{-\infty}^{+\infty} \sum_{i,j} \left\langle e^{-i\mathbf{q}\cdot\mathbf{R}_i(0)} e^{i\mathbf{q}\cdot\mathbf{R}_j(t)} \right\rangle e^{-i\omega t} dt$$
$$\left(\frac{d^2\sigma}{d\Omega dE}\right)_{inc} = \frac{1}{2\pi\hbar} \frac{k_1}{k_0} \frac{\sigma_{inc}}{4\pi} \int_{-\infty}^{+\infty} \sum_i \left\langle e^{-i\mathbf{q}\cdot\mathbf{R}_i(0)} e^{i\mathbf{q}\cdot\mathbf{R}_i(t)} \right\rangle e^{-i\omega t} dt$$

Dynamic structure factor

FT (
$$t, \omega$$
) $\int S(\mathbf{q}, \omega) = \frac{1}{2\pi\hbar} \int_{-\infty}^{+\infty} I(\mathbf{q}, t) e^{-i\omega t} dt.$

Intermediate scattering function

$$\mathsf{FT}(\mathbf{\Gamma},\mathbf{Q}) \quad \mathbf{I}_{s}(\mathbf{q},t) = \frac{1}{N} \sum_{i} \left\langle e^{-i\mathbf{q}\cdot\mathbf{R}_{t}(0)} e^{i\mathbf{q}\cdot\mathbf{R}_{t}(t)} \right\rangle e^{-i\omega t}.$$

Pair correlation function $G(\mathbf{r},t) = \frac{1}{(2\pi)^3} \int I(\mathbf{q},t)e^{-i\mathbf{q}\cdot\mathbf{r}}d\mathbf{q}.$

single-particle dynamics

single-particle tools

relevant proton reorientations: methyl and phenyl rotations about group's axis.

single-particle dynamics

motion decomposition in the glass

CM translation: frozen for polymers T<<Tg. Proton delocalisation: DW factor: $e^{-\frac{1}{3}Q^2 \langle u^2 \rangle}$

example:

Side group rotations:

Methyl protons 3-fold jumps

$$S_{rot}(Q,\omega) = A_0(Q)\delta(\omega) + A_1(Q)\frac{1}{\pi}\frac{3/2\tau}{(3/2\tau)^2 + \omega^2}$$

with
$$\begin{vmatrix} A_0(Q) = \frac{1}{3}[1 + 2j_0(Qr\sqrt{3})] \\ A_1(Q) = 1 - A_0(Q) \end{vmatrix}$$

distribution Tcorrelation

glassy polymers: no single relaxation time

variety local environments intra- molecular inter-

(Gaussian) distribution of potential barriers:

$$g(E_{i}) = \frac{1}{\sigma_{E}\sqrt{2\pi}} e^{\frac{-(E_{i}-E_{0})^{2}}{2\sigma_{E}^{2}}} \text{ if } \Gamma = \Gamma_{0} e^{-\frac{E_{A}}{RT}}$$

(log-Gaussian) distribution of reorientation times:

$$g(\ln \Gamma_i) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-\ln^2(\Gamma_i/\Gamma_0)}{2\sigma^2}}$$

Eo: average barrier height σ: distribution width

Dynamic structure factor: S

$$\mathbf{A}_{\text{rot}}(\mathbf{Q}, \boldsymbol{\omega}) = \mathbf{A}_0(\mathbf{Q})\delta(\boldsymbol{\omega}) + \mathbf{A}_1(\mathbf{Q})\sum_{i=1}^{N} \mathbf{g}_i \mathbf{L}_i(\boldsymbol{\omega})$$

Case study: Polycarbonates

Bisphenol-A polycarbonate

thermoplastic polymer with remarkable

- optical clarity
- mechanical properties high Tglass transition

 - large impact strength
 - ductility.
- commercial applications

depend strongly on architecture

BPA-PC

CH₃

CH₂

Polycarbonates

quantitative window scans

Elastic scans

$$S(Q, \omega \sim 0) = \int_{-\infty}^{+\infty} S(Q, \omega') R(\omega - \omega') d\omega' \bigg|_{\omega = 0}$$

for a Lorenztian resolution $S(Q, \omega \sim 0) \approx A_0(Q) + \frac{2}{\pi} [1 - A_0(Q)] \arctan\left(\frac{\Gamma_{res}}{\Gamma}\right)$

PARAMETERS

- <u2>(T) ← initial slope
- distribution: E_A and σ

• Г**о**

ASSUMED

- $\textbf{\cdot geometry} \leftarrow \textbf{EISF}$
- activation ansatz: $\Gamma = \Gamma_0 e^{-\frac{E_A}{RT}}$

TMPC

low temperature relaxation

TMPC first relaxation step:

- very low $T \rightarrow low Eo$
- rather sharp \rightarrow narrow

 \rightarrow candidate: rotational tunneling

Mathiew equation: inelastic lines

$$S_{rot}(Q,\omega) = \frac{5+4jo(Qr)}{9}\delta(\omega) + \frac{2(1-jo(Qr))}{9} \left[\delta(\omega-\omega_t) + \delta(\omega+\omega_t)\right]$$

with $\hbar\omega_t \propto E_A^{3/4} e^{-\sqrt{E_A}}$

Distribution of $E_A \rightarrow$

highly asymmetric distribution of ωt (Colmenero et al, PRL 1998)

3-fold CH3 potential

BPA-PC

1307)

Distribution?

backbone chain conformation Glassy Structural disorder polymers: CH₃ TMPC: only PC miscible with PS, large

≠ inter-molecular potential.

 $-CH_2$ -CH -

PS

ĊH₃ CH₃ CH₃ TMPC

χ_{fh}

Blending

CH₃

0

CH₃

intramolecular environment •average E_▲ architectural considerations intermolecular \rightarrow limited effect on σ

Conclusions: CASE STUDY

Characterisation local dynamics of PCs:

two architectures \rightarrow toughest (BPA-PC) & most brittle (TMPC)

Technique combined backscattering window scans, inelastic BS & TOF

TMPC

exhibits two methyl relaxations of rather different distribution of potentials

Blending affects $\sigma(E_A)$

E

BPA-PC Phenyl + methyl