Spin-Echo Small-Angle Neutron Scattering Wim G. Bouwman

• In 2 slides

- Instrument Delft
- Data analysis
- Examples
- Where?

Larmor encoding of scattering angle spin-echo small angle neutron scattering

- Unscattered beam gives spin echo $\phi = 0$ independent of height and angle
- Scattering by sample \rightarrow no complete spin echo \rightarrow net precession angle
- High resolution with divergent beam, sensitive to scattering over 3 μ rad

SESANS = Fourier transform scattering \Rightarrow projected density correlation function 20 nm – 20 μ m

- In 2 slides
- Instrument Delft
- Data analysis
- Examples
- Where?

SESANS

spin-echo small-angle neutron scattering

Magnetised foils tuned for π -flip: can be considered reversal field

 $3 \ \mu m$ permalloy film

Precesion regions defined by foils and magnets (1)

Precession regions defined by foils and magnets (2)

Precesion regions defined by foils and magnets (3)

Precesion regions defined by foils and magnets (4)

- In 2 slides
- Instrument Delft
- Data analysis
- Examples
- Where?

From SANS to SESANS

Precession angle proportional to: $\phi \propto \int B dL$: scattering angle

$$P = \cos(\phi) = \cos(Q_z \delta_z)$$

$$\delta_z = \frac{\gamma_n m \lambda^2 LB \cot \theta_0}{\pi h}$$

$$G(\delta_z) = \frac{1}{k_0^2} \int \frac{d\sigma(\vec{Q})}{d\Omega} \cos(Q_z \delta_z) d\vec{Q}$$

Keller *et al.* Neutron News **6**, (1995) 16 Rekveldt, NIMB **114**, 366 (1996).

Polarized Neutrons

Echo condition:

$$\int_{\pi/2}^{\pi} B_1 d\ell = \int_{\pi}^{\pi/2} B_2 d\ell$$

The measured quantity is: S(q,t)/S(q,0) where

NSE basics

$$t \propto \lambda^3 \int B d\ell$$

For elastic scattering:

For omega energy exchange:

$$\Phi_{tot} = \frac{\gamma B_1 l_1}{v_1} - \frac{\gamma B_2 l_2}{v_2} = 0$$

$$\sigma_t = \frac{h \gamma B l}{m v^3} \omega + o \left(\left(\frac{\omega}{1/2m v^2} \right)^2 \right)$$

The probability of omega energy exchange:

 $S(q, \boldsymbol{\omega})$

The final polarization: $\langle \cos \varphi \rangle = \frac{\int \cos(\frac{h\gamma Bl}{m\nu^3}\omega)S(q,\omega)d\omega}{\int S(q,\omega)d\omega} = S(q,t)$

 φ_t

Density, correlation, SANS, SESANS

SANS to SESANS conversion spheres R=100 nm

$$\tilde{G}(z) = \int_{0}^{\infty} J_{0}(Qz) \frac{d\Sigma}{d\Omega} (Q) Q dQ \qquad P(z) = e^{\frac{t\lambda^{2}}{2\pi} \left(\tilde{G}(z) - \tilde{G}(0)\right)}$$

Dilute Randomly Ordered Uniform Particles (reminder Karen Edler's lecture)

scattering from independent particles:

$$I(q) = \frac{N}{V} (\rho_p - \rho_s)^2 V_p^2 \left(\frac{1}{V_p} \left| \int_{particle} e^{i\boldsymbol{q}.\boldsymbol{r}} \, d\boldsymbol{r} \right|^2 \right)$$

• Assume: i) system is isotropic, then $\langle e^{-iqr} \rangle = \frac{\sin(qr)}{qr}$ ii) no long range order, so no correlations between two widely separated particles

$$I(q) = I_e(q)(\rho_p - \rho_s)^2 V_p \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

 $\gamma(r)$ = correlation function within particle

 $P(r)=4\pi r^2\gamma(r)$ is the probability of finding two points in the particle separated by r

Spheres

(adapted from Karen Edler's lecture)

Start with form factor:

$$F(q) = \frac{1}{V_p} \int_0^\infty \gamma(r) \frac{\sin(qr)}{qr} 4\pi r^2 dr$$

 Now consider radial pair correlation function for sphere, with sharp edges, radius R:

$$\begin{split} \gamma(r) &= 1 - \frac{3}{4} \Big(\frac{r}{R} \Big) + \frac{1}{16} \Big(\frac{r}{R} \Big)^3 \\ F(qR) &= \frac{1}{V_p} \int_0^\infty \left[1 - \frac{3}{4} \Big(\frac{r}{R} \Big) + \frac{1}{16} \Big(\frac{r}{R} \Big)^3 \right] \frac{\sin(qr)}{qr} 4\pi r^2 dr \end{split}$$

Integrate by parts three times:

$$F(Q) = \left[\frac{3(\sin(QR_p) - QR_p\cos(QR_p))}{(QR_p)^3}\right]^2$$

From structure to polarisation

structure $\gamma(\mathbf{r}) = \int \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}'$ density correlation function $G(z) = 2\int \gamma(x, 0, z) dx$ **SESANS** correlation function $P(z) = e^{(G(z) - G(0))}$ polarisation

Spheres in SESANS $\gamma(r) = 1 - \frac{3}{4R} + \frac{1}{16} \left(\frac{r}{R}\right)^3 \quad G(z) = \Re\left(\left[1 - \left(\frac{z}{2R}\right)^2\right]^{1/2} \left[1 + \frac{1}{2} \left(\frac{z}{2R}\right)^2\right]\right)$ $G(z) = \frac{2}{\xi} \int_{z}^{\infty} \frac{\gamma(r)r}{(r^2 - z^2)^{1/2}} dr \quad + 2\left(\frac{z}{2R}\right)^2 \left(1 - \frac{z}{4R}\right)^2 \ln\left\{\frac{z/R}{2 + [4 - (z/R)^2]^{1/2}}\right\}\right)$ $G(z) = \exp[-(9/8)(z/a)^2] \qquad P(z) = \exp\{\Sigma_t[G(z) - 1]\}$

More Complex: Fitting Scattering (Karen Edler)

 observed scattered intensity is Fourier Transform of real-space shapes

$$I(Q) = N_p V_p^2 (\rho_p - \rho_s)^2 F(Q) S(Q) + B$$

where: F(Q) = form factor

S(Q) = structure factor

Form Factor = scattering from within same particle ⇒ depends on particle shape Structure Factor = scattering from different particles ⇒ depends on interactions between particles

Structure Factors (Karen Edler)

- for dilute solutions S(Q) = 1
- particle interactions will affect the way they are distributed in space ⇒ changes scattering
- for charged spheres:

Structure factor in SESANS **convolution** product

Krouglov et al. J. Appl. Cryst. 36, 1417-1423 (2003)

Present data analysis

- Mostly ad hoc Matlab written real space models
- Recently started to Hankel transform SANS models

SASVIEW, work in progress

🖹 🖬 n n 🔳	Bookmarks FitPage1		
ta Explorer	C Fit Panel	© Graph2	
ion Options	FitPage1		
t all Data 🔹	I(q) Data Source		
	Name : FITI.DAT	104	[↓ FITI.DAT
FITI.DAT			M1 [FITI.DAT]
	Model [M1]	103	
	Category 1D Mode		
	Shapes Modify Details	10 ² E	
	HollowCylinderModel	-	
	Model Parameters	y(a	
rγ	Select All Value Error Min Max [Units]	100	
M1 [CylinderModel]	background 0 [1/cm]	DI E	
	[A]	10	
	Image: Tradius 41.437 +/- 0.0010767 [A]		
	▼ scale 0.21555 +/- 2.6606e-05	10-2	<u> </u>
	sldCyl 6.3e-06		
	sldSolv 1e-06	10-3	<u></u>
ad Data		10 5	10^{-1} 10^{-1} 10^{-1}
ete Data	Polydispersity and Orientational Distribution		Q(A)
ze Theory	On Off 2	C Graph9	
ew Plot		1000	
and Plot To Graph9	Fitting	चि 800 - 🛉 Residuals for M1[FITI.D	AT]
	Set Instrumental Smearing	400 - E 400 -	
end To Fitting	No smearing is selected	200	
Single Mode	Set Weighting by Selecting dI Source	-200	
Batch Mode	🔘 No Weighting 💿 Use dI Data 🔘 Use sqrt(I Data) 🔘 Use I Data	-400	\mathbf{V} ,
	Orange Min[1/A] Max[1/A] Maskinn(2D)	-600	10 ⁻² 10 ⁻¹ 10 ⁰
	Reset 0.00102802 0.244346 Fullo	10	O(A ⁻¹)
	Editor		

- In 2 slides
- Instrument Delft
- Data analysis
- Examples
- Where?

Depletion interactions in charged, aqueous colloid-polymer mixtures (model for e.g. milk)

salt reduces repulsion

Kitty van Gruijthuijsen

Peter Schurtenberger, Anna Stradner - Lund University

Adolphe Merkle Institute, Université de Fribourg

Water holding of ovalbumin gels Juiciness, release tastants

Maaike Nieuwland, TNO & TI Food and Nutrition

Texture fresh cheeses essential for pleasure eating and shell life time

Fresh cheese-type products have a complex microstructure, built from elements of quite different size and properties:

- Fat droplets, stabilised by protein
- Fat droplet aggregates
- Protein aggregates

Arjen Bot

Effect of processing: native vs denatured / neutral vs acidified

spin echo length [µm]

Bot et al. Food Hydrocolloids **21** 844–854 (2007)

Structure determined of dairy products

Hans Tromp NIZO food research the Netherlands

From milk to yogurt and curd

Tromp et al. Food Hydrocolloids 21, 154-158 (2007)

Kinetic measurement casein aggregation

Simulation and conclusion

• Reaction limited cluster aggregation

Léon van Heijkamp et al. J. Phys. Chem. A (2010)

Granular matter Robert Andersson

- To understand the bulk properties of assemblies of grains we better understand the microstructure of those assemblies.
- What is the distribution of density in an powder?
- How does all this change when we perturb the powder?

SESANS experiments on Si0₂ powders Exercise: interpret both measurements

Two samples:

Compacted, Structure

Saturation at 3mm and a hard sphere repulsion peak

"Poured", Clustered

Correlations extends over measured range due to clusters

Molecular dynamics Extract the SESANS correlation function from MD packings

Conclusion: simulations don't describe features of poured samples. Big holes could explain measurements

R. Andersson et al. Granular Matter 10 407-414 (2008)

Fractal structure of nanoparticles in fluidised bed

Lilian de Martin

$$\gamma_2(r) = (r/a + 1)^{D_{f,2} - 3} h(r, \xi_2)$$
 for $r > r_{c,1}$

Nanopowder has three length regimes

L. de Martin et al. Langmuir (2014) 30 12696

Applications of SESANS

real space, range 30 nm - 18 μ m, no collimation

- In 2 slides
- Instrument Delft
- Data analysis
- Examples
- Where?

OFFSPEC @ 2nd target station at ISIS

Jeroen Plomp, Victor de Haan, Wicher Kraan, Theo Rekveldt, Wim Bouwman, Robert Dalgliesh, Sean Langridge, Ad van Well

LARMOR: tool of Dutch Science and Industry

Triangular solenoids

- Magnetic prisms as triangular solenoids
- Works also in time of flight
- Limited in spin-echo length
- Low tech, low weight, small volume

SESANS instruments, outdated list when I made it ;-(

place	name	method	mono/ TOF	dedi- cated	max δ [μm]
Berlin	FLEX	bootstrap	Μ	no	0.7
Delft	SESANS	π -flip foils	Μ	yes	20
Delft	WESP	RF-flippers	TOF	no	1
ILL	EVA	bootstrap	Μ	refl	
FRM II	MIRA	bootstrap	Μ	no	1
FRM II	N-REX ⁺	$BS + \Delta$	Μ	refl	
LENS	SESANS	triangle		yes	
SNS		triangle	TOF	refl	> 0.1
ISIS	OFFSPEC	RF-flippers	TOF	refl	15
PNPI	SESANS	RF-flippers	Μ	yes	
ISIS	LARMOR	RF-flippers	TOF	no	10-20

- In 2 slides
- Instrument Delft
- Data analysis
- Examples
- Where?

