

EUROPEAN SPALLATION SOURCE

Neutron Sources

Oxford School on Neutron Scattering 8th September 2015

Ken Andersen

EUROPEAN SPALLATION SOURCE

Summary

- Neutron facilities
 - overview & trends
- Reactor-based sources
 - Institut Laue-Langevin
- Fission vs Spallation
- Components of a pulsed spallation neutron source
 - accelerator
 - target
 - moderators
- Neutron source time structure
 - the time of flight method
- Long-pulse neutron sources

Main European neutron sources 2015

Major neutron sources in the world

	2000	2010	2020	
ILL (F)				
HZB (D)				ont
PSI (CH)				บ. ก
FRM-II (D)				
HFIR (USA)				SD
NIST (USA)				
JRR-3 (J)				
PIK (RU)				
IBR-2/2M (RU)				<u>م</u>
ISIS-1 (UK)				
ISIS-2 (UK)				sec
SNS (USA)				
J-PARC (J)				
ESS (SE)				

Major neutron sources in the world

	Fission/Spa	llation	Continuous/	Pulsed
ILL (F)	X		X	
HZB (D)	X		X	
PSI (CH)		X	X	
FRM-II (D)	X		X	
HFIR (USA)	X		Х	
NIST (USA)	X		X	
JRR-3 (J)	X		X	
PIK (RU)	X		X	
IBR-2/2M (RU)	X			X
ISIS-1 (UK)		X		X
ISIS-2 (UK)		X		X
SNS (USA)		X		X
J-PARC (J)		X		X
ESS (SE)		X		X

The first neutron source

EUROPEAN SPALLATION SOURCE

James Chadwick: used Polonium as alpha emitter on Beryllium

÷ \bigcirc +

⁴He + ⁹Be \rightarrow ¹²C + neutron

EUROPEAN SPALLATION SOURCE

Evolution of neutron sources

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Nuclear Fission

two daughter nuclei

Evolution of neutron sources

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

EUROPEAN SPALLATION SOURCE

Evolution of neutron sources

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Nuclear Spallation

EUROPEAN SPALLATION SOURCE

Evolution of neutron sources

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Evolution of neutron sources

EUROPEAN SPALLATION SOURCE

(Updated from Neutron Scattering, K. Sköld and D. L. Price, eds., Academic Press, 1986)

Slow Neutrons vs Light

	light	neutrons
λ	< µm	< nm
E	> eV	> meV
penetration	~ µm	~ cm
θ _c	90°	1 °
В	10 ¹⁸ p/cm²/ster/s (60W lightbulb)	10 ¹⁴ n/cm²/ster/s (60MW reactor)
spin	1	1/2
interaction	electromagnetic	strong force, magnetic
charge	0	0

Why neutrons?

- Thermal neutron have wavelengths similar to inter-atomic distances
- Thermal neutrons have energies comparable to lattice vibrations
- Neutrons are non-destructive
- Neutrons interact weakly
 - they penetrate into the bulk
- Neutrons interact via a simple point-like potential
 - amplitudes are straightforward to interpret
- Neutrons have a magnetic moment
 - great for magnetism
- Neutrons see a completely different contrast to x-rays
 - e.g. hydrogen is very visible

ILL Reactor Neutron Source

- Highly-enriched uranium
- Compact design for high brightness
- Heavy-water cooling
- Single control rod
- 57MW thermal power
- Cold, thermal, hot sources

ILL Reactor Neutron Source

- Highly-enriched uranium
- Compact design for high brightness
- Heavy-water cooling
- Single control rod
- 57MW thermal power
- Cold, thermal, hot sources

	cold	thermal	hot
moderator	liquid D ₂	Liquid D ₂ O	graphite
moderator temperature	20K	300K	2000K
neutron wavelength	3→20Å	1→3Å	0.3→1Å

ILL Moderator Brightnesses

Spallation vs Fission

EUROPEAN SPALLATION SOURCE

Fission

200 MeV/fission 2.35 – 1 = 1.35 neutrons freed => 150 MeV/neutron

two daughter nuclei

Spallation vs Fission

EUROPEAN SPALLATION SOURCE

Fission

200 MeV/fission 2.35 – 1 = 1.35 neutrons freed => 150 MeV/neutron

two daughter nuclei

<u>1 GeV proton in:</u>

250 MeV becomes mass (endothermic reaction) 30 neutrons freed

=> 25 MeV/neutron

Spallation vs Fission

EUROPEAN SPALLATION SOURCE

Fission

200 MeV/fission 2.35 – 1 = 1.35 neutrons freed => 150 MeV/neutron

Spallation

<u>1 GeV proton in:</u>

250 MeV becomes mass (endothermic reaction)

30 neutrons freed

=> 25 MeV/neutron

6x more neutrons per unit heat

Spallation Sources

- Proton beam parameters: energy (=voltage) and current
- Current: neutron production is proportional to number of protons
- Energy: neutron production is proportional to proton energy (E>500MeV)

EUROPEAN SPALLATION

SOURCE

- Neutron production is proportional to Power = Voltage x Current
 - e.g. ISIS: 800MeV x 200uA = 160kW
 - e.g. ESS: 2.5GeV x 2mA = 5MW

Spallation Sources

- Spallation: 10x higher neutron brightness per unit heat
 - about 6x more neutrons per unit heat
 - about ½ the production volume
- 1 MW spallation source = 10 MW reactor
 - e.g. 800 MeV at 1.25 mA (PSI)
 - e.g. 3 GeV at 0.4 mA (J-PARC)
- Peak brightness >> time-average brightness

Spallation Sources

100

0

- Spallation: 10x higher neutron brightness per unit heat
 - about 6x more neutrons per unit heat
 - about ½ the production volume
- 1 MW spallation source = 10 MW reactor
 - e.g. 800 MeV at 1.25 mA (PSI)

• Peak brightness >> time-average brightness

De Broglie Relations

Particle	Wave
p = mv	$p = \hbar k = h/\lambda$
$E = \frac{1}{2}mv^2$	$E = \hbar \omega = hf$

$\hbar = h/2\pi$
$h = 6.6 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$
$m_n = 1.67 \times 10^{-27} \mathrm{kg}$

 $\lambda = h / mv$

 $\lambda[\text{\AA}] = 3.956 / v[\text{m/ms}]$ $t[\text{ms}] = L[\text{m}] \times \lambda[\text{\AA}] / 3.956$

The Time-of-Flight (TOF) Method

SNS, Oak Ridge, USA (1MW)

J-PARC, Tokai, Japan (500kW)

J-PARC, Tokai, Japan (500kW)

ESS, Lund, Sweden (5MW in 2025)

Short-Pulse Spallation Sources

- Accelerator
 - H- ion source
 - Linear accelerator
 - Stripper converts H- to H+
 - Synchrotron
- Spallation target
- Reflector
- Moderators

Linear accelerator: LINAC

Linear accelerator: LINAC

SNS ion source: H-

Different types of Linac

Synchrotron

- T ISIS SYNCHROTRON HALL HEP TEST BEAM
- Synchronise: •
 - B-field: bend
 - E-field: accelerate
 - E & B field: focus
 - magnets to each other
- Injection •
 - stripper foil
- Extraction
 - kicker magnet

Synchrotron

- Synchronise:
 - B-field: bend
 - E-field: accelerate
 - E & B field: focus
 - magnets to each other
- Injection
 - stripper foil
- Extraction
 - kicker magnet

Synchrotron

- $\Delta t_{linac} \approx 1 \text{ ms}$
- $E_{ring} \approx 1 \text{ GeV}$ - $v \approx 3 \times 10^8 \text{ m/s}$
- L_{ring} ≈ 200 m
- $\Delta t_{ring} \approx 1 \ \mu s$

ISIS target 1: solid tungsten

SNS target: liquid mercury

ESS target

ISIS TS2 Target

- Target produces neutrons in > MeV range
- Moderators contain H to thermalise neutrons
 - largest scattering cross-section (80b)
 - lower mass: same as neutron
 - on average, ½ energy lost per collision
 - 100 MeV -> 10 meV requires about 25 collisions
- Moderators embedded in reflector, usually D₂O-cooled Be
 - minimal absorption
 - large scattering cross-section (8b)
 - little thermalisation

EUROPEAN

49

EUROPEAN

SPALLATION SOURCE

EUROPEAN

SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

EUROPEAN

SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

Time-of-flight (TOF) resolution

Time-of-flight (TOF) resolution

Moderator Decoupling and Poisoning

Moderator Decoupling and Poisoning

SNS moderators

ISIS TS2 Target

Moderator Temperature

EUROPEAN SPALLATION SOURCE

ISIS-TS1 moderators at 160kW

EUROPEAN **ess** SPALLATION SOURCE Pulsed source time structures (λ =5Å) log(Intensity) 100 short pulse 10 100µs 0 ILL 57MW 1 ISIS-TS1 128kW 0.1 20 40 80 100 60 120 0 64

time (ms)

Pulsed source time structures (λ=5Å)

EUROPEAN

SPALLATION SOURCE

Pulsed source time structures (λ =5Å)

EUROPEAN

SPALLATION SOURCE

Pulsed source time structures (λ =5Å)

EUROPEAN SPALLATION SOURCE

Pulsed source time structures (λ =5Å)

log(Intensity) 100 long pulse J-PARC 1MW 3ms ESS 5MW 10 SNS 1MW ILL 57MW 1 ISIS-TS2 32kW SIS-TS1 128kW 0.1 20 40 80 100 60 120 0 68

time (ms)

Beyond Short-Pulse Limits

17 x

SNS instantaneous power on target: 17kJ in 1µs:

Reaches limits of spallation source technology: shock waves in target, space charge density in accelerator ring, ...

Beyond Short-Pulse Limits

17 x

SNS instantaneous power on target: 17kJ in 1µs:

ESS instantaneous power on target: 125MW 360kJ in 2.86ms

Long-pulse performance

Thank You!

