

Neutron Instrumentation

Oxford School on Neutron Scattering 9th September 2015

Ken Andersen

EUROPEAN SPALLATION SOURCE

Summary

- Neutron instrument concepts
 - time of flight
 - Bragg's law
 - Liouville's theorem
- Neutron Instrumentation
 - guides
 - detectors
 - choppers
- Neutron diffractometers
- Neutron spectrometers

De Broglie Relations

Particle	Wave
p = mv	$p = \hbar k = h/\lambda$
$E = \frac{1}{2}mv^2$	$E = \hbar \omega = hf$

$\hbar = h/2\pi$
$h = 6.6 \times 10^{-34} \mathrm{J} \cdot \mathrm{s}$
$m_n = 1.67 \times 10^{-27} \mathrm{kg}$

 $\lambda = h / mv$

 $\lambda[\text{\AA}] = 3.956 / v[\text{m/ms}]$ $t[\text{ms}] = L[\text{m}] \times \lambda[\text{\AA}] / 3.956$

The time-of-flight (TOF) method

-			

EUROPEAN SPALLATION SOURCE

$\lambda = 2d\sin\theta$

EUROPEAN SPALLATION SOURCE

Wavevector:

Wavevector:

EUROPEAN SPALLATION SOURCE

 $=\frac{2\pi}{2\pi}$ $p = \hbar k$ *k* = r $\lambda = 2d\sin\theta$ dsinθ

EUROPEAN SPALLATION SOURCE

 \hat{k}_{f}

$$\vec{k}_i = \vec{k}_f + \vec{Q}$$
$$\Rightarrow \vec{Q} = \vec{k}_i - \vec{k}_f$$

 $Q = 2k\sin\theta$ $\lambda = 2d\sin\theta$

$$k = \frac{2\pi}{\lambda}$$

Bragg's Law: |Q|

 2π Л

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total reflection θ_c

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total
reflection θ_c

$$\begin{array}{l} \cos\theta_{c} = n'/n = n' \\ n' = 1 - \frac{N\lambda^{2}b}{2\pi} \\ \cos\theta_{c} \approx 1 - \theta_{c}^{2}/2 \end{array} \right\} \Rightarrow \theta_{c} = \lambda\sqrt{Nb/\pi}$$

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total
reflection θ_c

$$\begin{array}{l} \cos\theta_{\rm c} = {\rm n'/n} = {\rm n'} \\ {\rm n'} = 1 - \frac{N\lambda^2 b}{2\pi} \\ \cos\theta_{\rm c} \approx 1 - \theta_{\rm c}^2/2 \end{array} \end{array} \Rightarrow \theta_{\rm c} = \lambda \sqrt{Nb/\pi} \quad \begin{array}{l} {\rm for \ natural \ Ni,} \\ \theta_{\rm c} = \lambda [{\rm \AA}] \times 0.1^{\circ} \\ Q_{\rm c} = 0.0218 \ {\rm \AA}^{-1} \end{array}$$

$$\frac{\cos\theta}{\cos\theta'} = \frac{v_1}{v_2} = \frac{n'}{n} = n'$$

 $\theta'=0$: critical angle of total
reflection θ_c

$$\begin{array}{l} \cos\theta_{\rm c} = {\rm n'/n} = {\rm n'} \\ {\rm n'} = 1 - \frac{{\rm N}\lambda^2 {\rm b}}{2\pi} \\ \cos\theta_{\rm c} \approx 1 - \theta_{\rm c}^2/2 \end{array} \end{array} \xrightarrow{} \begin{array}{l} \Rightarrow \theta_{\rm c} = \lambda \sqrt{{\rm Nb/\pi}} \\ \hline {\rm Definition:} \\ Q = 4\pi \sin\theta/\lambda \end{array} \begin{array}{l} {\rm for \ natural \ Ni,} \\ \theta_{\rm c} = \lambda [{\rm \AA}] \times 0.1^{\circ} \\ Q_{\rm c} = 0.0218 \ {\rm \AA}^{-1} \end{array} \end{array}$$

Courtesy of J. Stahn, PSI

EUROPEAN SPALLATION SOURCE

Courtesy of J. Stahn, PSI

Courtesy of J. Stahn, PSI

State-of-the-art Supermirrors

State-of-the-art Supermirrors

Neutron guides

Background Reduction

Guides can be used to reduce background

- Distance:
 - move away from fastneutron source ~ $1/R^2$

Background Reduction

EUROPEAN SPALLATION SOURCE

Guides can be used to reduce background

- Distance:
 - move away from fastneutron source ~ 1/R²
- Curved Guides:
 - avoid direct line-of-sight
 - avoid gammas
 - avoid fast neutrons

Curved Guides

- Blue reflecting from both sides
- Red garland reflections
- Green exceeds critical angle
- Fewer neutrons along inside face

Focusing

EUROPEAN SPALLATION SOURCE

Guides can also be used to increase flux

Converging guide increases flux, but increases divergence

EUROPEAN SPALLATION SOURCE

- Conservation laws:
 - neutrons can't be created from thin air
 - neither can phase space density

Intensity(position,angle,time,wavelength,...)

▲ X

 θ_{max} Acceptance Diagram **→** Z Х θ $-\theta_{\text{max}}$ θ_{max}

EUROPEAN SPALLATION SOURCE

37

- Conservation laws:
 - neutrons can't be created from thin air
 - neither can phase space density
- There is no such thing as a free lunch
 - Beam manipulation transfers distribution between area, divergence, time, energy
- Most common application:
 - Focusing increases divergence
 - improve flux, lose angular resolution

Diffractometers

- Measure structure (d-spacings)
- Assume k_i=k_f
- Measure k_i or k_f :
 - Bragg diffraction
 - Time-of-flight
- Samples :
 - Crystals
 - Powders
 - Liquids
 - Large molecules or structures
 - Surfaces

Powder diffractometers

- Measure crystal structure using Bragg's Law
- Large single crystals are rarely available

EUROPEAN SPALLATION

Time-of-flight (TOF) Method

EUROPEAN SPALLATION SOURCE

POLARIS @ ISIS TS1

Crystal Monochromators

EUROPEAN SPALLATION SOURCE

Graphite 002

			1
d		θ dsinθ	• •

	d-spacing
Germanium 333	1.089 Å
Copper 200	1.807 Å
Silicon 111	3.135 Å
Graphite 002	3.355 Å

Copper 200

Constant-Wavelength Diffraction

Single Crystal Diffraction

- Complex structures
- Large unit cells
 - Protein crystallography
- Laue method
 - white beam

Small-Angle Neutron Scattering

Reflectometry

Reflection from surfaces and interfaces

Neutron Spectroscopy

• Excitations: vibrations and other movements

EUROPEAN SPALLATION

SOURCE

- Structural knowledge is usually prerequisite
 - Measure diffraction first
- $k_i \neq k_f$
- Measure k_i and k_f:
 - Bragg Diffraction
 - Time-of-flight
 - Larmor precession
- Methods:
 - Fix k_i and scan k_f "direct geometry"
 - Fix k_f and scan k_i "indirect geometry"
- Energy scales: $< \mu eV \rightarrow > eV$

Chopper Spectrometers

Neutron Choppers

EUROPEAN SPALLATION SOURCE

Disk choppers

Chopper Spectrometers

- General-Purpose Spectrometers
 - Incident energy ranges from 1meV to 1eV
- Huge position-sensitive detector arrays
 - Single-crystal samples

EUROPEAN SPALLATION

SOURCE

Detectors

EUROPEAN SPALLATION SOURCE

 $\frac{{}^{3}\text{He gas tubes}}{n + {}^{3}\text{He } \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.764 \text{ MeV}}$ >1mm resolution High efficiency Low gamma-sensitivity ${}^{3}\text{He supply problem}$

Scintillators n + ⁶Li → ⁴He + ³H + 4.79 MeV <1mm resolution Medium efficiency Some gamma-sensitivity Magnetic-field sensitivity

Detectors

 $n + {}^{10}B \rightarrow {}^{7}Li + {}^{4}He + 0.48 \text{ MeV}$ massive development programme
none yet in operation
many different types

boron layer thickness limited to ~ 1 μ m => ~ 5% efficiency

perpendicular blades

Alternative to Direct Geometry

SOURCE

EUROPEAN SPALLATION

High Resolution 1: Backscattering

Use single crystals in as close to backscattering as possible to define k_{f} . Scan through k_i with as good energy resolution.

Backscattering

Continuous-Source Backscattering

EUROPEAN SPALLATION SOURCE

Continuous-Source Backscattering

Fix k_f by backscattering analysers Scan k_i by Doppler-shifting backscattering monochromator

Energy resolution < 1μeV Energy range ~ ± 15 μeV

High Resolution 2: Neutron Spin Echo

Triple-Axis Spectrometers

- Single-crystal excitations
- Very flexible
- Measures a single point in \vec{Q} -E space at a time
- Scans:
 - Constant \hat{Q} : Scan E at constant \mathbf{k}_{i} or \mathbf{k}_{f}
 - Constant E: Scan Q in any direction

TAS with multiplexing

EUROPEAN SPALLATION SOURCE

IN20 flat-cone multi-analyser

Thank you!

