

rersity nester	Introduction	
a the University of Manchi	 Residual stresses in materials Principles of measuring residual stresses by diffraction Neutron and Synchrotron X-ray diffraction Properties Facilities Case Studies / Questions From Engineering to Physical Metallurgy – Understanding plasticity Conclusions 	
	Oxford School on Neutron Scattering	2

Jniversity anchester	Modelling deformation Micromechanics	
of Ma	 Dislocations, particles, grain boundaries (grain size) interstitial atoms 	,
-	Continuum mechanics:	
	Stresses and strains	
	 Intergranular stresses 	
-	Polycrystal plasticity	
	 Mean field methods, i.e. every grain has the same matrix 	
	 Finite element methods 	
	 Each grain has a characteristic neighbourhood 	
	Predict maximum and minimum stresses ? Oxford School on Neutron Scattering	52

irversity ichester	Attempted General Guidelines	
Man	Synchrotrons	
-6	Synchrotrons:	
	 Non-destructive, fast strain mapping, mostly single peak 	
	 Light alloys (small atomic number) 	
	 High spatial resolution aluminium-titanium (think microns) 	
	 High instrumental resolution (small peak width) 	
	 Near surface measurement because of analyser crystal 	
	 Bulk materials / larger atomic number with 	
	energy-dispersive method	
	• Polymers	
	Not so good at: Steels and higher, big bulky samples, harsh environments, diamond shaped GV	
	Oxford School on Neutron Scattering	57